SpatialDE.TissueSegmentationParameters¶
- class SpatialDE.TissueSegmentationParameters(nclasses=None, neighbors=None, smoothness_factor=2, class_prune_threshold=1e-06, abstol=1e-12, reltol=1e-12, maxiter=1000, gamma_1=1e-14, gamma_2=1e-14, eta_1=1, eta_2=1)¶
Parameters for tissue segmentation.
- Parameters:
nclasses (
Optional
[int
]) – Maximum number of regions to consider. Defaults to the square root of the number of observations.neighbors (
Optional
[int
]) – Number of neighbors for the nearest-neighbor graph. Defaults to a fully connected graph (there is no speed difference). A value of 0 makes the model ignore spatial information and reduces it to a Poisson mixture model with a Dirichlet process prior.smoothness_factor (
float
) – Spatial smoothness. Larger values induce more fine-grained segmentations. This value will be multiplied with the minimum squared distance within the data set, so it is dimensionless. Defaults to2
.class_prune_threshold (
float
) – Probability threshold at which unused regions are removed. Defaults to1e-6
.abstol (
float
) – Absolute convergence tolerance. Defaults to1e-12
.reltol (
float
) – Relative convergence tolerance. Defaults to1e-12
.maxiter (
int
) – Maximum number of iterations. Defaults to1000
.gamma_1 (
float
) – Parameter of the Poisson mean prior, defaults to1e-14
.gamma_2 (
float
) – Parameter of the Poisson mean prior, defaults to1e-14
.eta_1 (
float
) – Parameter of the Dirichlet process hyperprior, defaults to1
.eta_2 (
float
) – Parameter of the Dirichlet process hyperprior, defaults to1
.