SpatialDE.TissueSegmentationParameters
- class SpatialDE.TissueSegmentationParameters(nclasses=None, neighbors=None, smoothness_factor=2, class_prune_threshold=1e-06, abstol=1e-12, reltol=1e-12, maxiter=1000, gamma_1=1e-14, gamma_2=1e-14, eta_1=1, eta_2=1)
Parameters for tissue segmentation.
- Parameters:
nclasses (
Optional[int]) – Maximum number of regions to consider. Defaults to the square root of the number of observations.neighbors (
Optional[int]) – Number of neighbors for the nearest-neighbor graph. Defaults to a fully connected graph (there is no speed difference). A value of 0 makes the model ignore spatial information and reduces it to a Poisson mixture model with a Dirichlet process prior.smoothness_factor (
float) – Spatial smoothness. Larger values induce more fine-grained segmentations. This value will be multiplied with the minimum squared distance within the data set, so it is dimensionless. Defaults to2.class_prune_threshold (
float) – Probability threshold at which unused regions are removed. Defaults to1e-6.abstol (
float) – Absolute convergence tolerance. Defaults to1e-12.reltol (
float) – Relative convergence tolerance. Defaults to1e-12.maxiter (
int) – Maximum number of iterations. Defaults to1000.gamma_1 (
float) – Parameter of the Poisson mean prior, defaults to1e-14.gamma_2 (
float) – Parameter of the Poisson mean prior, defaults to1e-14.eta_1 (
float) – Parameter of the Dirichlet process hyperprior, defaults to1.eta_2 (
float) – Parameter of the Dirichlet process hyperprior, defaults to1.