SpatialDE.fit_spatial_interactions¶
- SpatialDE.fit_spatial_interactions(adata, layer=None, genes=None, spatial_key='spatial', ard=False, sizefactors=None)¶
Estimate magnitude of spatial cell-cell interactions using an SVCA model (ARnol, 2019).
In contrast to the original publication, which used a Gaussian approximation, this fits a Poisson GLMM. This function is intendend to be used after
test_spatial_interactions()
to analyse the genes showing significant cell-cell interactions.- Parameters:
adata (
AnnData
) – The annotated data matrix.layer (
Optional
[str
]) – Name of the AnnData object layer to use. By defaultadata.X
is used.genes (
Optional
[List
[str
]]) – List of genes to analyze. Defaults to all genes.spatial_key (
str
) – Key inadata.obsm
where the spatial coordinates are stored.ard (
bool
) – Whether to use automatic relevance determination for the kernel. This amounts to a separate lengthscale for each spatial dimension.sizefactors (
Optional
[ndarray
]) – Scaling factors for the observations. Defaults to total read counts.
- Return type:
DataFrame
Returns: A Pandas DataFrame with the results.
- Return type:
DataFrame
- Parameters:
adata (AnnData) –
layer (str | None) –
genes (List[str] | None) –
spatial_key (str) –
ard (bool) –
sizefactors (ndarray | None) –