SpatialDE.tissue_segmentation¶
- SpatialDE.tissue_segmentation(adata, layer=None, genes=None, sizefactors=None, spatial_key='spatial', params=TissueSegmentationParameters(), labels=None, rng=np.random.default_rng(), copy=False)¶
Segment a spatial transcriptomics dataset into distinct spatial regions.
Uses a hidden Markov random field (HMRF) model with a Poisson likelihood. A Dirichlet process prior allows to automatically determine the number of distinct regions in the dataset.
- Parameters:
adata (
AnnData
) – The annotated data matrix.layer (
Optional
[str
]) – Name of the AnnData object layer to use. By defaultadata.X
is used.genes (
Optional
[List
[str
]]) – List of genes to base the segmentation on. Defaults to all genes.sizefactors (
Optional
[ndarray
]) – Scaling factors for the observations. Defaults to total read counts.spatial_key (
str
) – Key inadata.obsm
where the spatial coordinates are stored.params (
TissueSegmentationParameters
) – Parameters for the algorithm, e.g. prior distributions, spatial smoothness, etc.labels (
Union
[ndarray
,Tensor
,None
]) – Initial label for each observation. Defaults to a random initialization.rng (
Generator
) – Random number generator.copy – Whether to return a copy of
adata
with results or write the results intoadata
in-place.
- Return type:
Tuple
[TissueSegmentation
,Optional
[AnnData
]]- Returns:
A tuple. The first element is a
TissueSegmentation
, the second isNone
ifcopy == False
or anAnnData
object. Region labels will be inadata.obs["segmentation_labels"]
and region probabilities inadata.obsm["segmentation_class_probabilities"]
.