SpatialDE.fit_detailed¶
- SpatialDE.fit_detailed(adata, genes=None, layer=None, normalized=False, sizefactor_col=None, spatial_key='spatial', control=GPControl(), rng=np.random.default_rng())¶
Fits Gaussian processes to genes.
A Gaussian process based on highly interpretable spectral mixture kernels (Wilson et al. 2013, Wilson 2014) is fitted separately to each gene. Sparse GPs are used on large datasets (>1000 observations) to improve speed. This uses a Gaussian likelihood and requires appropriate data normalization.
- Parameters:
adata (
AnnData
) – The annotated data matrix.genes (
Optional
[List
[str
]]) – List of genes to base the analysis on. Defaults to all genes.layer (
Optional
[str
]) – Name of the AnnData object layer to use. By defaultadata.X
is used.normalized (
bool
) – Whether the data are already normalized to an approximately Gaussian likelihood. IfFalse
, they will be normalized using the workflow from Svensson et al, 2018.sizefactor_col (
Optional
[str
]) – Column inadata.obs
to be used for normalization. IfNone
, total number of counts per spot will be used.spatial_key (
str
) – Key inadata.obsm
where the spatial coordinates are stored.control (
Optional
[GPControl
]) – Parameters for the Gaussian process, e.g. number of kernel components, number of inducing points.rng (
Generator
) – Random number generator.
- Return type:
DataSetResults
- Returns:
A dictionary with the results. The dictionary has an additional method
to_df
, which returns a DataFrame with the key results.